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A subgrid-scale model based on a truncated exact series expansion for Gaussian
filtered products is considered for the incompressible scalar advection—diffusion
equation. This model can be interpreted as a tensor diffusivity term proportional to
the rate-of-strain tensor of the large-scale filtered velocity field. To control negative
diffusion in the stretching directions, a Lagrangian method is used. The scalar field is
represented in terms of a collection of anisotropic or axisymmetric Gaussian particles.
An expansion in Hermite polynomials leads to equations of motion for particle
velocity and shape based on a weighted average. A new accurate remeshing method,
taking advantage of the properties of the subgrid model, is proposed and tested.
A stagnation flow is used to demonstrate several theoretical and numerical aspects
of the model. Better agreement with filtered DNS data is obtained than with the
Smagorinsky subgrid model for a 2D time-dependent sinusoidal flow, which yields
chaotic advection. The use of anisotropic particles leads to slightly more accurate
results than the use of axisymmetric particles. Computational efficiency, however,
makes the latter therefore the preferred choice.2001 Academic Press

Key Wordscomputational fluid dynamics; scalar transport; large eddy simulation;
Lagrangian particle method; tensor-diffusivity subgrid model.

1. INTRODUCTION

The scalar advection—diffusion equation describes the motion of a scalar quantity ur
the advection of a velocity field and diffusion. For small diffusivity values, a large con
putational effort is required to account for both the large- and small-scale structures.
reduce this effort a filtering operation may be used to obtain an equation for the large-s
structures in which the effect of the small scales has to be modeled. These simulation:
known as large eddy simulations (LES) and the models as subgrid models.

The tensor-diffusivity subgrid model will be the focus of this article. This model wa
derived independently by Bedford and Yeo [1, 2] and Leonard [3] after using a Gauss
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2 MOELEKER AND LEONARD

filter and expressing the filtered products in an infinite sum of known filtered quantitie
Retaining the first two terms in this expansion gives the subgrid model. The methoc
ill-conditioned so that some form of regularization is required.

A particle method that provides a suitable regularization is used to numerically solve
model equation. So-called anisotropic Gaussian particles will be used resulting in ec
tions that have higher order accuracy compared to the widely used axisymmetric Gaus
particles. The anisotropic particles will have nine degrees of freedom, three for the locat
in space and the six remaining ones for the size and orientation. To assess the benefit:
higher order scheme, axisymmetric particles have been used as well.

To numerically account for the molecular diffusion of a scalar or the diffusion of vorticit
due to viscous effects, a variety of methods have been used by different researchers
example, in the random-walk method a random displacement is added to the motior
each particle [4]. The core spreading method increases the size of the Gaussian par
over time to simulate the effect of diffusion [5]; one particular advantage is that it solv
the diffusive part of the equation exactly. However, Greengard [6] showed that the ¢
spreading method approximates the wrong equation in the limit of an infinite number
particles.

Recently, Rossi [7, 8] revamped the use of the core spreading method for the visc
vorticity equation by introducing a splitting and merging scheme for the axisymmett
Gaussian particles. He showed that by splitting the particles and thus controlling the c
size of the particles, convergence of the vorticity equation is obtained in the limit of :
infinite number of particles and splitting the particles continuously. The merging sche!
he employed was only used to keep the total number of particles reasonable. In the pre
work the core expansion method has been used as well and a remeshing scheme ha:s
implemented to keep the core size of the particles within certain bounds.

This article is composed as follows. Section 2 introduces the tensor-diffusivity mod
We elaborate on the particle method in Section 3.1 and on the remeshing procedur
Section 3.2. Section 4 deals with several test cases to illustrate the method and demon:
several ideas. Three appendices are attached to give several mathematical derivatio
more detail.

2. TENSOR-DIFFUSIVITY SUBGRID MODEL

The transport of a passive scalar quanijtgx, t) in an incompressible velocity field
u(x, t) is governed by
d
%“VW = KV2y, 1)
wherex is the diffusivity coefficient. Consider a spatial Gaussian filter with characterist
length scaler and spatial dimensiod, given by

F(x) = 1 e X 2)
(oM =%z )
Convolving this filter with (1) gives the filtered advection—diffusion equation
W v = vy, ©
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TENSOR-DIFFUSIVITY SUBGRID MODEL 3

where convolved or filtered quantities are indicated by a hat. Under the assumption
both ¢ (x, t) andu(x, t) are continuous and differentiable, the unknown filtered functiol
uy can be expressed in known quantities as

o0 n ~ i
-~ 1 /02 a"a "y
uy(x, t) = — | —= 4
VD ; n! ( 2 ) DX O, - -+ X, OXi X, -+ X, “)

where Einstein’s summation convention is used. This result was independently establis
by Bedford and Yeo [1, 2] and Leonard [3]. Leonard’s derivation uses an expansion
Hermite polynomials and makes use of their properties. See Appendix A for more dete
Upon substitution of (4) in (3) and retaining only the first two terms in the infinite expansio
we can approximate (3) as

3%y

0X; 0Xj ’

W - . 0%,
ﬁ+u-V1/f=xv2¢—7s.,-

®)

where the strain rate tens&; = ;(3% + %) has been introduced. The extra term car

be interpreted as an added diffusivity with an effective dif'fusi\,'-itgzZ éj , Which depends
on the spatial direction (hence, the name tensor-diffusivity subgrid model). Since tr:
(S = V-0 =0, at least one of the eigenvalues of the strain rate tensor has to be gre
than zero, indicative of a direction where the subgrid model acts as negative diffusion. .
A1 is the largest eigenvalue &fin the directionx; then the total effective diffusivity in this
direction is given by— ";xl + &, which results in negative diffusion fan > ?‘—2

It was shown by Caratt al. [9] that the use of spatial filters other than Gaussian resul
in doubly infinite expansions. However, the leading two terms in such an expansion are
same, except for a multiplicative constant, for a large class of different filters including
top-hat filter and all discrete filters. This implies that all these filters result in the tens
diffusivity subgrid model given above.

Itis desirable that a subgrid model does not depend on the frame of reference an obs
chooses, as nature is unaware of our choices. In mathematical terms, this is reflecte
proper transformation properties between different frames of reference [10]. An equatio
called frame indifferent if it has these properties. Examples are the Navier—Stokes eque
and the scalar advection—diffusion equation. Itis desirable for subgrid-scale modelsto sa
these transformations as well. It was shown by Fureby [11] that only filtering operatt
with rotational symmetry, among these the Gaussian filter, will preserve material fra
indifference. Consider the transformation between a starred and unstarred coordinate sy
given by a time-dependent rotatign(with QT = Q1) and relative velocity,

X" = Qij (OX; + G (1). (6)

After applying this transformation to the tensor-diffusivity subgrid model, one can shc
that the models in the starred and unstarred system are related by

O‘2A 821&* _ O_ZS- 821&
T2 Taxax”

2 7 oxrax:

(7

which establishes material frame indifference.
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To give some insightinto the effect of the extratermin (5), consider the following examp!
Assume there is (approximately) a uniform velocity field in the principalirection given
by u; = A1X; and set the diffusivitye equal to zero. A simple wave in thg direction
is used as an initial condition{}(x, 0) = €%, wherek is the wave number. The filtered
advection—diffusion equation (5) simplifies to

Ay Ay o2 3%y
X = —— A 8
at % 2" ax2 ®

It is straightforward to verify thaty = keP~41% explo2k2(1 — exp(—211t))/4] is a
solution. The wave number of this solutionkexp(—A;t), which decreases in time due
to stretching. The amplitude of the wave is given by e3sf(1 — exp(—2x1t))/4] and
increases in time. The initial rate of increase becomes arbitrarily large—aso. The
addition of molecular diffusion avoids this undesirable behavior onty=f %zkl.

Additional understanding comes from the evolution equation for the root mean square
the scalar fieldj (t),

=y I
ddit = —ZK/SZ(Vw)de+02/9 Si gzgz dx. 9)
By using the principal coordinate system3)fone can ascertain that the second term on th
right-hand side can be both positive and negative, implying that the subgrid model allc
for backscatter.

On occasion mathematical models of physical processes lead to ill-posedness; se
example Barenblatet al. [12] or Krasny [13]. Some form of regularization is required
to obtain a well-posed problem. Care needs to be taken in the choice of regularizat
since the results can depend strongly on the approach used. By filtering the advect
diffusion equation (1), information about the high wave number components is lost.
order to have the solution with the regularization approximating the solution of (5) close
we need a regularization that maintains control over the entire wave number spectr
Computations solving (5) directly using a spectral or finite difference method show tt
growing instabilities are introduced. For the finite difference approach, an example v
be given in Section 4.2. Good results to regularize a finite difference method using
tensor-diffusivity model for the momentum equation have been obtained by Leonard :
Winckelmans [14] by adding an extra dynamic eddy viscosity term. Our work will regulariz
the problem by decomposing the scalar field into a collection of Lagrangian particles, e
of which are well behaved for large wave numbers.

3. NUMERICAL METHOD

3.1. Particle Method

As discussed in the previous section we use a particle method to numerically solve
by approximating the scalar fielgl(x, t) (dropping the hats) by a sum &f anisotropic
Gaussian particles

N _ T _
Jix. t)zzak\/det(Mk) eXp(_(x Xi) " Mi(X Xk))’ (10)

— (Y 8¢
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where each particlk is centered axy andd is the spatial dimension of the problem. The
core size of each particle is given &yand the amplitude bg. The positive definite matrix
My is called the shape function. Only the locatiqrand the shape functidvi, are assumed
to be functions of time. These particles were recently used by Rossi [15] in a viscous vo
method. The Fourier transform of (10) is given by

N 2L, Tan—1
Flyik, t) = ZakexF)(_W)eik'Xk’ (11)
k=1

wherek is the wave number. This function appears to be well behaved for large we
numbers as long ad remains positive definite, giving us the desired control over all wav
numbers.

Equations for the time evolution of the shape functigpand the locatiorx are found
by substituting (10) in (5) and expanding each term in a series of Hermite polynomie
An expansion in Hermite polynomials is used instead of the more commonly used Tay
polynomials, as the former are in a more natural way connected to Gaussians. Itis expe
that the contribution of the lower order terms in the expansion is most significant. By sett
the coefficients of the lower order terms in the expansion equal to zero, we obtain the des
equations of motion. A detailed derivation of this procedure can be found in Appendix
The end result for the location of the particles is

ka _y 0" ——k
— =Uu"——Va, 12
dt 2 (12)

where an overline over an arbitrary functidiix, t) is defined by

R xi, t) =

JdetMy) (X — Xi) TM (X — X))
Wl /Q f(x,t) exp(— 2 )dX. (13)

The overline can be interpreted as a weighted average over the anisotropic Gaussian pe
k. Since this average depends on the parkclevo particles that occupy the same location
Xk, but different shapelsly, can move in different spatial directions. For the time evolutior
of the matrixMy, we find

dM _ — 4 2
d—t" = VUM — M VU — 8—’§Mk|v|k + %Mk(Vuk + Vi M,
k k

2 —_ _
+ % (VYU M+ MT V'), (14)

If we consider the next order coefficients in the expansion, we see that the@eaé}and
O(0%8). Combined with the truncation error of the subgrid model @}¢*), the total
error isO(8¢, 028, o).

To assess the benefits of using a higher order particle method and for comparison
sons, we have also considered the widely used axisymmetric Gaussian particles, whic
obtained by settiniyl, equal to the identity matrix in (10). The core sids now assumed
to be a function of time, as is the locatiap. The governing equations can be derived in
a similar way using an expansion in Hermite polynomials or the equations for anisotro
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Gaussian particles can be simplified using the constraint that the particles remain axis
metric for all time. Both derivations yield the same result. For the time evolution of tt
location of the particles, we obtain (12) again and for the coresize

ds?

d—tk =4k + O(82, 02). (15)
Note that we can use (15) only for small values @ndsy. Inaccuracies are introduced when
8k becomes larger, a problem of the core expansion method as shown by Greengard [¢

3.2. Remeshing

There are three main reasons which necessitate the remeshing of the scalar fiel
splitting and merging of the particles every so often. First, we need to circumvent t
inherent problem of the core expansion method by keeping the effective core size of
particles within limits, where the effective core size is deflneﬁrasmherekk 1isthe largest
eigenvalue oM. Second, to get a smooth scalar field, the overlap parameter, definec
the ratio of the effective core 5|z/\éL over the corresponding interparticle distamgédas
to be of order unity. Owing to straining, particles tend to move apart from each other
some directions, thereby decreasing the overlap parameter and making a remesh nece
to maintain a smooth scalar field. Finally, anisotropic particles can become very ellipti
also as the result of straining, which increases the numerical errors.

Assume that at timé, we want to replace all thdl old particles with a set oM new
identical axisymmetric particles with initial core sizeThe new set of particles is spread
out on a regular rectangular mesh with grid spadingetween neighboring particles in
each direction. The location of theth new patrticle is denoted ky. The amplitudes,’s
of the new patrticles have to be chosen appropriately to minimize the error between the
and the new scalar fields. Using an approximation based on a least-square-error me
we were able to find the following explicit expressions for the unknown coefficigists
two dimensions:

N ach?/detM )
k=1 n\/((Sf — Ma7?) (82 — Ak27?)

(& — x0T (5EMy + t2detMi) 1) (& — xk)
X eXp(‘ (62 — ) (37 — hot?) ‘

b =

(16)

Here the eigenvalues of the shape maltfixareiy 1 andiy 2. A derivation of this equation
(in one dimension) can be found in Appendix C. To get sensible results we need to sat
< i—ki for all k and both eigenvalues. This puts an upper bound on the new core size 0
the particles.

In all the computations presented in this paper, we set the new core sigeal to the
initial core size(sx) att = 0 to have the same core size of the particles initially and afte
each remesh procedure. It then follows that all eigenvalues of the shape Matidx all
particlesk have to be less than unityx < 1) for this remeshing procedure to be applicable.
It can be shown theoretically that in the absence of the last term of (14), this requiremer
always met. In the presence of this term, numerical experiments show that if the influe
of the subgrid model is smalb(small) compared to the advection and diffusion terms



TENSOR-DIFFUSIVITY SUBGRID MODEL 7

this requirement is met as well. The derivation of (16) in case of axisymmetric particles
straightforward.

4. TEST CASES

4.1. Stagnation Flow

We will start with a simple problem for illustrative purposes. Consider a two-dimensior
stagnation flow given by the incompressible velocity componantscx andv = —cy,
wherec is an arbitrary constant. Assume no molecular diffusivity={ 0) and consider
only one anisotropic particleinitially located atxx with initial shape matribMy = 1.

For this specific velocity field, the tensor-diffusivity subgrid model is exact and thus tl
filtered advection—diffusion equation (5) is also. The (numerical) particle method usi
anisotropic Gaussian particles is an exact solution to (5) as well and will be used to
some basic features of the model and the numerical implementation.

Let us first solve the equation of motion for the anisotropic particles analytically. Tl
equation of motion for the location of the particle (12) reduces to

dxe o [ o
rrie u® =uxx) = (—cw) . a7

Equation (14) for the shape matti, with elementsr;; can be reduced to

dmyq 2062

= —2cmy; + —5-c(mi; — m2,), (18a)
dt 52
dmp 202
2 — 2cmp + —5c(mi; —m3,), (18b)
dt 52
dm 202
g 2 _ —5 CMip(M11 — Myp), (18c)
t 8

with the solution (using the initial conditioM, = 1,)

82/0?
myy(t) = 11 (51%/:;2 —1)e 2t (19a)
_ 85/02
maa(t) = 1+ (32/0? — )&’ (19b)
myo(t) = 0, (19C)

which corresponds to the exact solution of the problem.dot o, the solution blows
up att = —2—1C In(1 - 85/02), whereas foby > o, the solution will stay finite for all time.
In the unfiltered scalar field, the most singular structures are delta functions. Applyini
Gaussian filter with widthy transforms these delta functions to Gaussians with width
The blowup of the solution fodx < o is therefore not relevant to our applications, since
such Gaussians do not correspond to meaningful basis elements for the unfiltered fiel
Four different test runs have been performed for the stagnation flow, numbered 1 thro
4, all usingc = 1 ando = 0.2. Each of these runs uses the fifth-order Cash—Karp Rung
Kutta method with adaptive step size for error control as discussed in Section 16.2 of P
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TABLE |
Test Data for the Stagnation Flow

Run Type of particles N 3« 8 /d
1 Anisotropic 1 0.50 n/a
2 Anisotropic 148 0.25 1.25
3 Axisymmetric 148 0.25 1.25
4 Anisotropic 148 0.15 0.75

et al. [16] to march forward in time. The initial condition is a Gaussian with core siz
8k = 0.5 and amplitude = 1 centered atx, y) = (0, 2).

Table | gives information about each of the different runs. The first column gives the r
number and the second one the type of Gaussian particles that were used. Next, the
number of particle$N) is listed and the core size of the particles$ at 0. The last column
gives the overlap parameter at the start of the simulation. The first run represents the €
initial condition with just one particle, whereas the other three runs use 148 patrticles c
regular two-dimensional grid with gridspacihg= 0.2 to approximate the initial condition
of run 1. For runs 2 and 3, the overlap parameter is 1.25, and for run 4, itis 0.75, all lead
to smooth scalar fields. No remeshing scheme was used in any of these runs.

Run 1 will exhibit only a small time-stepping error, whereas run 2 has both a small tirr
stepping and spatial discretization error. The errors for these two runs are small enoug
get very good agreement with the theoretical solution, as long as anisotropic patrticles
used with core sizes larger than Define the aspect ratio for each particle as the larges
eigenvalue over the smallest eigenvalud/igf A large aspect ratio is indicative of particles
that are stretched a lot, which is undesirable from a numerical point of view. Sifzce 0
for all time, the aspect ratio is here equahte,/m;;. Att = 1, the aspect ratio for run 1
equals 23.26 and for run 2 it equals 4.79.

Figure 1 gives the comparison between runs 1, 2, and 3=20.6. As stated before, the
anisotropic particles yield the exact theoretical result (except for small time-stepping ¢
spatial discretization errors). The results for runs 1 and 2 are virtually indistinguishal
while the solution using axisymmetric particles starts to show inaccuracies.

It was shown theoretically that if the core size of the particles is chosen smaller than
filtering sizeo, the solution will blow up in a finite time, as these small-core particles d

FIG.1. Contourlines 0.1, 0.5, and 1.0 for runs 1 and 2 (solid—results are virtually identical) and 3 (dashed
t =0.6.
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FIG. 2. Contourlines 0.1, 0.5, and 1.0 for run 4tat 0.3.

not correspond to a realistic unfiltered field. Figure 2 illustrates this blowup for run 4
t = 0.3. It is interesting to note that the particles take on an elliptical shape oriented ¢
from the direction one would expect. For the parameters given for run 4, the theoret
results predict that the solution blows uptat 0.41, which also happens in the numerical
calculation.

4.2. 2D Flow

To show and test different aspects of the particle method and the tensor-diffusivity sub
model, we use the incompressible velocity field given by

(u) _ sin(x) sin(y) (20)
v/ \ cogx)coqy) + e sin(wt) /’

wheree is the amplitude ana is the frequency of a sinusoidal perturbation. We will use
€ = 0.5 andw = 1.0 in this section. Figure 3 shows the streamline pattetn=a0. As

an initial condition for the unfiltered scalar field, the Gaussian{fgxp- 0.3)2 + (y +
0.4)2]/p?}, has been used, whepe= 0.5. The filtered initial condition is plotted in Fig. 4.
The contourlines are 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5, just as i
the contour plots in this section. The diffusivity constant has been set equatt0.001
for all computations in this section.

=

>0F
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w

FIG. 3. Streamline pattern of (20) at= 0.
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FIG. 4. Initial Gaussian distribution centered@3, —0.4).

To test the accuracy of the various schemes, we have computed a DNS solution u
a central second-order difference method to solve (1) directly. A regular equidistant g
with a grid spacing of 0.016 was set up (800 by 800 grid points betweenand 2r).
The fourth-order Runge—Kutta method as discussed in Ferziger and Peric [17] was use
integrate in time with time stegt = 0.005. To compatre this converged DNS solution with
the results of the LES, this solution has been filtered usirg 0.15. The left column of
Fig. 5 shows contour plots for the filtered DNS solution at times3, 6, and 9.

For purposes of comparison, a finite difference computation using the Smagorinsky s
grid model (with a gridspacing 0.016 and a step size 0.005) has been made. This simule
used the same Gaussian filter with= 0.15 as the Lagrangian computations, thus lead
ing to identical initial scalar fields. Results are given in the right column of Fig. 5 for
Smagorinsky constant @f; = 0.2 and a turbulent Prandtl numbeg Br 1. The use of other
constants was investigated, itg = 0.2 gave best results. By comparison with the filtered
DNS solution, one concludes that the Smagorinsky model recovers the general feature
the flow, but it is not diffusive enough in several areas and too diffusive in others.

The addition of the tensor-diffusivity subgrid model to the finite difference code will lea
to inherent instabilities in the solution. Negative values of the scalar function appear dire
after the start of the computation and lead to a blowup that is exponential in time. This
undoubtedly due to the negative diffusion in the subgrid model. Figure 6 shows contourli
att = 2for afinite difference calculation (with a grid spacing of 0.03 and a step size of 0.0C
with the tensor-diffusivity subgrid model = 2. The dashed contour-line is 0. Instabilities
appear first at the locations where the effects of negative diffusion are highest. Outside tt
areas the solution is still good. A spectral method will lead to similar instabilities.

As noted earlier, we expect that the Lagrangian particle method will provide the requit
regularization of the tensor diffusivity model. To implement the particle method, the filtere
initial condition is approximated by a sum of Gaussian particles that are initially axisyr
metric. In total, 6504 particles were used, each with a core size of 0.15 resulting in
overlap parameter of 4.5. Numerical experiments show that if the core size is equal
slightly larger than the filtering constaat the remeshing scheme yields the best results
Also, as discussed above, the core size must be larger than the filtering censtéuis
initial condition has been used for all the Lagrangian calculations in this section.

The left column in Fig. 7 gives the solution using the particle method without the subg!
model using anisotropic particles. The solution has not been remeshed. Time integra
was performed by the algorithm mentioned in the previous section. Fairly quickly aft
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FIG. 5. Contour plots for filtered DNS solution (left column) and Smagorinsky subgrid model (right column

] O N H N | ,\‘\‘~,.r:; t = 2
4 2 0 2 4
X

FIG. 6. Contour plot using the tensor-diffusivity model in a finite difference calculation.
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FIG. 7. Contour plots for Lagrangian particle method using anisotropic particles and no subgrid model (|
column) and the tensor-diffusivity model (right column). No remeshing has been used.

the start of the computation, the solution starts to show differences from the filtered D
solution. The results after turning on the tensor-diffusivity model are depicted in the rig
column of 7. Again no remeshing scheme was used. Up to dbel8, this solution is in
good agreement with the filtered DNS one. The errors are due to the ever growing core
and changing shape, the increased aspect ratio, and the separation of neighboring par
At t = 1, the maximum aspect ratio has increased to 1.6 ahekat to 107. At this time,
about 81% of the particles have an aspect ratio larger than 2, and 8% have one larger
25. Att = 9, the maximum aspect ratio has increased until 365 and more than half of
particles have an aspect ratio greater than 10.
The location of the anisotropic particles is given in Fig. & at 9. Each line segment

represents a particle. The length of the segment is an indication of the aspect ratio an
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FIG. 8. Direction and aspect ratio of anisotropic Gaussian particlés=a®, where the length is a measure
of the aspect ratio.

direction of the segment indicates the long axis (direction of the smallest eigenvalue) of
particle. There are regions where the particles are stretched considerably, especially w
one of the velocity components is small. It can be inferred that particle paths can cross ¢
other. Evenin a computation using a stationary velocity field, this is possible, since partic
that are located at the same position will not necessarily move in the same direction. -
depends on the shape of the particles.

To improve the accuracy of the solution, we next remesh the scalar field every unit of tir
Since the field spreads out over time, the total number of particles increases throughou
computation. Starting with 6504 particles, the number reaches 18,745 partitlest
The results are given in the left column of Fig. 9. Very good agreement between this solu
and the filtered DNS solution is obtained.

To see the effect of using a higher order particle method, the solution using axisymme
particles is plotted in the right column of Fig. 9. The solution was remeshed every time u
resulting in 20,520 particles at= 9. The use of axisymmetric particles leads to result
that are almost as good as when one uses anisotropic particles. Since the computation
axisymmetric particles is significantly faster than using anisotropic particles (8 minu
versus 36 minutes), they are the preferred choice based on computational efficiency.

Table Il summarizes the seven different computational runs performed in this section.
first column gives the run number, followed by the method used, where FD stands for fir
difference and Lagr for Lagrangian method. The model indicates if the computation v

TABLE Il
Runs for the 2D-Flow Test Problem
Run  Method Model No. Particles/Grid Points  Remeshed CPU Time
1 FD DNS 800x 800 points — 24 hr
2 FD Smagorinsky 80& 800 points — 24 hr
3 FD D 800x 800 points — —
4 Lagr No model 6504 particles no 12 min
5 Lagr TD—Anisotropic 6504 particles no 9 min
6 Lagr TD—Anisotropic 6504-21,593 particles yes 36 min
7 Lagr TD—Isotropic 6504-23,960 particles yes 8 min
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b T S 2 4

X

FIG. 9. Contour plots for anisotropic particles (left column) and axisymmetric particles (right column). Th
solution has been remeshed every time unit.

DNS or used the Smagorinsky or tensor-diffusivity (TD) model. In the case of a Lagrangi
method, it also indicates if anisotropic or isotropic Gaussian particles were used. For
finite difference method, the grid size is given and for the Lagrangian method the tc
number of particles at the beginning of the run. The number of particles at the end of a
is printed if it differs from the initial number. This is only the case if remeshing was use
as indicated in the remeshed column.
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The approximate CPU time on a Pentium 650 MHz processor is given. At first glan
the Lagrangian appears to be about two orders of magnitude faster than the finite differe
calculations. However, note that the grid sizes also differ by two orders of magnitude. T
clear advantage of the particle method is that particles are only needed in areas whe
significant scalar quantity is present. No valuable computational time is lost in areas wt
no scalar quantity is present.

5. CONCLUSIONS AND FUTURE RESEARCH

A new subgrid model was obtained by expanding the unknown variable in terms of
infinite sum of known variables and truncating this series. The model was named the ten
diffusivity model and does not have any degrees of freedom. It was shown that the sub
model introduces negative diffusion in at least one spatial direction and is frame indiffere

Anisotropic Gaussian particles were introduced and equations of motion were deri
using an expansion in Hermite polynomials. Equations for the widely used axisymme
Gaussian particles were obtained as well. To prevent particles from becoming too large
elliptical, or too widely separated in a particular direction, a remeshing scheme tailorec
the characteristics of the model has been implemented.

A stagnation flow can be solved exactly and was used to illustrate different aspect:
the subgrid model and the particle method. A simple two-dimensional incompressible fl
has been used to show that the particle method yields accurate results. Even for static
flows, path lines can cross. The particle method resulted in more accurate solutions
those of the Smagorinsky subgrid model.

Both anisotropic and axisymmetric Gaussian particles can be used to obtain gooc
sults. Anisotropic particles do not have to be remeshed as often as axisymmetric parti
but because of computational efficiency and better accuracy for the remeshing procec
axisymmetric particles are the preferred choice to use in this type of simulation.

Research is currently underway to apply the tensor-diffusivity model in three dimensic
on simple model flows as well as to more realistic flows such as decaying and forced ho
geneous turbulence. For these flows, an exact velocity field is not known and interpola
schemes are needed, adding to the cost of the model. Alternate schemes for regulariz
and obtaining better solutions are being considered. In cases where the velocity field is
resolved, we found a novel method for the time evolution of the location of the particle
which is currently being tested.

APPENDIX A

It will be shown that the filtered producf/tﬁ is related to the filtered function andg
for a Gaussian filter as

—~ =1 /02\"  anf g
fa =3 = (G—> g (A1)

= 2 3Xi18Xi2~-~8Xin 3Xi18Xi2~-~8Xin’

where a sum over repeated indices is implied &) andg(x) are arbitrary functions in
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C*°. By definition,

~ . 1 , , X —x|2
fgx) = m/\/ f (X )g(x)exp( 52 ) dx’, (A.2)

whered is the spatial dimension and the integration is taken over the infinite spatial dom:
V. For simplicity and without loss of generality, assume one spatial dimension. Expa
f (x") in a series of Hermite polynomials dgx’) = Z‘;OZO f_n(x) Hn("/a;x), whereH, is the
n-th Hermite polynomial and the coefficient%(x) are given by

X' — x)? X' — X ,
2nnl /f(x)exp( g ) n( . )dx. (A.3)

After partial integration of the right-hand sid¢imes, we findf_n(x) = 2;’:]! anai(nx). Plugging

these results in (A.2) gives

> onf - -
fogx) = Z Gn! ax(“X)/ \/_ (x)exp( ﬂ) Hn(xa X) dx. (A.4)

The integral on the right-hand side can be written, following (A.3),"a8 & (x) to end up
with

fa(x) =

i o" "f(x) on i o" a”f”(x)ana“g(x)

2'nlgn(x) =
2nl 9xn 2"nl oxn axn
n=0 n=0

fox) = (A5)

which is the one-dimensional version of (A.1).

APPENDIX B

We want to solve the filtered advection—diffusion equation (5) by approximating t
unknown scalar fields (x, t) by a sum ofN anisotropic Gaussian particles given by (10).
Time evolution equations for the shape mathkix and the locatiorx, are derived by
expanding each term of (5) in a series of Hermite polynomials and setting the coefficie
of lower order powers to zero. Without loss of generality, only one parkicknd two
dimensions are considered. In the principle coordinate syster) of matrix My, this
particlek is given by

(B.1)

Aed A _ 2 A . 2
Y€, 1) = asz’iexp(_ (6~ 80°+ 2 = mo )
7'[8'( 8k

where (1, 0) and (0, 1) are the orthogonal unit eigenvectors corresponding to the eigenve
of My, A¢ andx,;, respectively. Sethm n = H5HT = HE {[A: (6 — &)]/8kIHI{[A, (0 — m)]/
8k} whereHp, is them-th Hermite polynom|al. Introduce the diagonal matiix with the
eigenvalues; and, as its elements. The filtered advection—diffusion equation (5) does n
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change due to the transformation except that all the derivatives are now taken with res
to the& coordinate. Hats on top of variables will be dropped.
The time derivative ofyx can be expressed in a sum of Hermite polynomils, as

T dA
A€ — €0 — (€ — & dA

%_[%wemw] 2.dgg
| det(Ay) 82 dt 82

v e

1 d)xgH 1 d)» H \/7d§'k \/7d7]k

:[_%dt ZO_KW 02 S5 ot T

Ho, 1} Yk, (B.2)

where the equalit){%[det(A)]/det(A)} = dA" (A1), valid for any nonsingular matrix
A, has been used. The advection tenm Vl/f V -uy) can be expressed in a se-
ries of Hermite polynomials by first expanding the velocity field in an infinite series ¢
Hermite polynomials, followed by carrying out the gradient operator uielmg()e*)‘2 =

[ Hn-100 exp(=x?)],

u- VWk = Z V. (Jm,n Hm,n’ﬁk) = Z lTm,nv . (Hm,nlﬁk)
m,n=0 m,n=0

(B.3)

o e Ay —
= Z |:——§Um,n Hm+1’n - ﬁvm,n Hm,n+1:| Yk,
Ok )

m,n=0

where the functionsm , are defined by

B A, [T —E)TALE —
um,n@k,t):rﬁ . / / exp(—(g & SEK(’E gk))u@,t)Hm,ndwn, (8.4)

—00 —00

andh, = 2"nl/7. Note thatuy, , = O(sg"™™). The diffusion term can be written in terms
of Hermite polynomials as

2 4
KV = |:—6—I;(Ak)ii + (S_IZ(E — &) T AAK(E — Ek)] Yk

KA
= [ gHzo—i——Hoz Y. (B.5)
8¢ 8¢

Finally, consider the tensor-diffusivity term

o? 9%y o? 2 4
_751 8&.8; =7 [—8551 Ajj + ST‘}(g — &0 T AKSAK(E —Ek)} Yk
2
=_02[)‘58UH ﬁalH VAeh (8U+8U>H1,1}ﬂk.

+ +
s20e 2% s2an 7 82 \on | oe

(B.6)
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After expressing the components of the strain rate teﬂ%‘éa] in a series of Hermite
polynomials we end up with '

o2 92
*S, Yk
0 0§
. 62| /heh, (O0U v
= Z _7 52 ”( +a&-> (H$+1+2mHm )( n+1+2nHr?fl)
m,n=0 k
A OU
o (Hmi2n + 4MHnn + 4m(M — D He20)
82 0&mn
Ay dv
+ = —— (Hmnt2 +4nHpp +4n(N — D) Hmnn_2) pvx. (B.7)
5k 07m,n

Next we will set the coefficients in front of the lower order Hermite polynomials equi
to zero. Owing to incompressibility, the coefficientldp o is automatically zero. Setting
the coefficients oH o andHp 1 equal to zero, we get

d& o2 (92u  82u

— —— =+ B.8

dt 2 \ 02 + an? B8

dnk o2 (0%2v 0%

— —— =+ B.9

dt 2 \ 9&2 + an2 (8.9)
where the shortcut = fo o has been introduced. Using partial integration, we can expre:

fm n in terms of derivatives of . If we transform back to the original coordinate system

and combine both equations, we end up with (12). Setting the coefficiehtsgdnd Ho 2
equal to zero, we find

1
<l

Il
<

da au Aehe 202 QU Bu  3u
e e B T dde e 0 e + —— ), (B.10a)
dt d& 82 82 o 9£3 ' 9EIn2
da v Aghy 202 Bv Bu
S e =t s 408y [~ 4+ —— ), (B.10b)
dt an 8¢ 8¢ an 0£20n  an3
and forHs 1
0=

au v ek, (U v
_)\587 — )Lnai + > R T
n § S \9n 9§

o2 (3% 3Bu\ o, [ Bv 3%
ot s )+ s+ ) (B.11)
2 \9&%an an 2 \9&an &
It is straightforward to check that if we combine the three equations above in matrix for
we obtain

dA — - 4 2
< = —VUA~ AVU' — 5 AkAy+ 275 AcSAw
k Ok

dt

2 2 -
+ %szuAk + %Akvvzu . (B.12)

If we transform back to the original coordinate system, we get (14).
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APPENDIX C

Without loss of generality, Eq. (16) will be derived in one dimension, using the sar
notation as in Section 3.2. Define the er¢gx) of the approximation between the old and
the new scalar fields as the difference between both fields,

akm )L(x—x)2 u (x — &)
Z K) p( K k) Z ( T2|

e(X) = ) (C.1)

where the shape matrMy has been replaced hy, the eigenvalue (and only element) of
M. We will use the least-square-error approximation, which results in a linear system
M equations for the unknowln’s, where thé -th equation is given by

M
b & —&)2
Z—Zexp< o )
N X I )2 I £)2
= Z / a%;”_k exp(—W) exp(—(xrf')> dx. (C.2)
k k

Express the first exponential on the right-hand side as

)“ I __ 2
exp(— k(X82 Xi) )
k
F v 32 2
(xxkx)> exp<_62)‘kxz) dg, (C.3)
2_

1
= —— exp[-
/Jrn/&f—)»ktz ( 72 AT
—0Q

which is only possible for? < i—ki for all k. This puts an upper bound on the new core siz¢
of the particles. Substituting in (C.2), carrying out the integration avesind replacing
by X’ — x, we have

M
b| & —&)?
> oo )

Ak (_)»k(X' - Xk)2> exp(— X —&)?
2m\/8% — ,\kfz 82 — a2 272

) dx. (C.4)

P
Il
H

pnqz 5\
8\8

The last exponential on the right-hand side is now approximated as

_£)2 M
exp( 4 E.)) Zm(x )exp< (azzé. ) (C.5)

where the functiom(x) has to be chosen. See for example Cottet and Koumoutsakos |[!
for a discussion of possible choices. After substitution of this equation in (C.4), we he
on both sides of the equation a sum over the set of new particles, and we find the follow



20 MOELEKER AND LEONARD

explicit expressions for the unknown coefficiebt's:

N (X — X)?

Zofm <_ 5 — hut? )m(x —&dx.  (C.H)

We have found that the simplest possible choiméx) = §(x)h, wheres(x) is the Dirac
delta function, gives very good results. Equation (C.6) then reduces to

2
k(X Xk)>h ©7)

N
R =
kz:;f 82 — A2 8% — ht?

In case ofd spatial dimensions, the expressions for the new amplitudes are obtained
multiplying (C.7)d times in the principle coordinate system of the shape mitgifor each
particlek, before transforming back to the orginal coordinate system. In two dimensior
we obtain (16).

ACKNOWLEDGMENT

This research has been made possible by a grant from the Department of Energy.

REFERENCES

1. K. W. Bedford and W. K. Yeo, Conjunctive filtering procedures in surface water flow and transpaatgi
Eddy Simulation of Complex Engineering and Geophysical Fledied by B. Galperin and S. A. Orszag
(Cambridge University Press, Cambridge, UK, 1993), pp. 513-537.

2. W.K. Yeo,A Generalized High Pass/Low Pass Averaging Procedure for Deriving and Solving Turbulent Flc
Equations Ph.D. thesis (The Ohio State University, 1987).

. A. Leonard, Large-eddy simulation of chaotic convection and beyond, AIAA Paper 97-0204 (1997).
. A. J. Chorin, Numerical study of slightly viscous fladv,Fluid Mech 57, 785 (1973).
. A. Leonard, Vortex methods for flow simulatioh,Comput. Phys37, 289 (1980).

. C. Greengard, The core spreading vortex method approximates the wrong equ&mmnput. Phy$1, 345
(1985).

7. L. F. Rossi, Resurrecting core spreading vortex methods: A new scheme that is both deterministic and
vergent,SIAM J. Sci. Computl7, 370 (1996).

8. L. F. Rossi, Merging computational elements in vortex simulati8isM J. Sci. Compuil7, 1014 (1997).

(o262 B SN V]

9. D. Carati, G. S. Winckelmans, and H. Jeanmart, Exact expansions for filtered-scales modelling with a v
class of les filters, irDirect and Large-Eddy Simultation llledited by P. R. Voke, N. D. Sandham, and
L. Kleiser (Kluwer Academic, Dordrecht/Norwell, MA, 1999), pp. 213-224.

10. M. E. Gurtin,An Introduction to Continuum Mechani¢academic Press, San Diego, 1981).

11. C. Fureby, On subgrid scale modeling in large eddy simulations of compressibl@figsv, Fluids8, 1301
(1996).

12. G. |. Barenblatt, M. Bertsch, R. Dal Passo, and M. Ughi, A degenerate pseudoparabolic regularization
nonlinear forward—backward heat equation arising in the theory of heat and mass exchange in stably stra
turbulent shear flonsIAM J. Math. Anal24, 1414 (1993).

13. R. Krasny, A study of singularity formation in a vortex sheet by the point vortex approximatiéyid
Mech 167, 65 (1986).

14. A. Leonard and G. S. Winckelmans, A tensor-diffusivity subgrid model for large-eddy simulatDivet
and Large-Eddy Simultation llledited by P. R. Voke, N. D. Sandham, and L. Kleiser (Kluwer Academic
Publishers, Dordrecht/Norwell, MA, 1999), pp. 147-162.



TENSOR-DIFFUSIVITY SUBGRID MODEL 21

15. L. F. Rossi, High order vortex methods with deforming elliptical Gaussian blobs 1: Derivation and validati
submitted for publication.

16. W.H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flanidumerical Recipes in C: The Art of Scientific
Computing(Cambridge University Press, Cambridge, UK, 1995).

17. J. H. Ferziger and M. PeriComputational Methods for Fluid Dynami¢Springer-Verlag, Berlin/New York,
1996).

18. G.-H. Cottet and P. Koumoutsaka&rtex Methods: Theory and Applicatio@ambridge University Press,
Cambridge, UK, 1999).



	1. INTRODUCTION
	2. TENSOR-DIFFUSIVITY SUBGRID MODEL
	3. NUMERICAL METHOD
	4. TEST CASES
	TABLE I
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	TABLE II
	FIG. 9.

	5. CONCLUSIONS AND FUTURE RESEARCH
	APPENDIX A
	APPENDIX B
	APPENDIX C
	ACKNOWLEDGMENT
	REFERENCES

